Меню сайта

Последние новости

Причина отравления вод океана.

Американские ученые из штата Мичиган полагают, что в качестве главной причины отравления вод Мирового океана ртутью являются бактерии.

Секрет выживания лягушек.

Американским ученым удалось выяснить, как лягушкам удается продолжать жить даже после глубокой заморозки.

Секрет долголетия ночницы.

Биологи уже давно считают, что продолжительность жизни животного определяется очень просто: чем оно больше, тем дольше живет.



Возбудимость и ее измерение, лабильность
Материалы по биологии и химии / Возбудимость и ее измерение, лабильность
Страница 2

Существует несколько механизмов транспорта веществ через мембрану.

Диффузия - проникновение веществ через мембрану по градиенту концентрации, осуществляется при участии белков мембраны, в которых имеются молекулярные поры, либо при участии липидной фазы.

При облегченной диффузии специальные мембранные белки-переносчики избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану по градиенту концентрации.

Активный транспорт сопряжен с затратами энергии и служит для переноса веществ против их градиента концентрации. Он осуществляется специальными белками-переносчиками, образующими, так называемые ионные насосы.

В процессе активного транспорта ионов в клетку через цитоплазматическую мембрану проникают различные сахара, нуклеотиды, аминокислоты.

Функции биологических мембран следующие:

Ø Отграничивают содержимое клетки от внешней среды и содержимое органелл от цитоплазмы;

Ø Обеспечивают транспорт веществ в клетку и из нее, из цитоплазмы в органеллы и наоборот;

Ø Выполняют роль рецепторов;

Ø Являются катализаторами;

Ø Участвуют в преобразовании энергии.

. Потенциал покоя. Мембраны, в том чикле плазматические, в принципе непроницаемы для заряженных частиц. Правда, в мембране имеется Na+, K+, АТФ фаза, осуществляющая активный перенос ионов Na из клетки в обмен на ионы К+. Этот транспорт энергозависим и сопряжен с гидролизом АТФ. За счет работы Nа+, К+ - насоса поддерживается неравновесное распределение ионов Na+ и К+ между клеткой и окружающей средой. Поскольку расщепление одной молекулы АТФ обеспечивает перенос трех ионов Na+ и двух ионов К+, этот транспорт электрогенен, т. е. цитоплазма клетки заряжена отрицательно по отношению к внеклеточному пространству.

Электрохимический потенциал. Содержимое клетки заряжено отрицательно по отношению к внеклеточному пространству. Основная причина возникновения на мембране электрического потенциала - существование специфических ионных каналов. Транспорт ионов через каналы происходит по градиенту концентрации или под действием мембранного потенциала. В невозбужденной клетке часть К+ каналов находится в открытом состоянии и ионы К+ постоянно диффундируют из нейрона в окружающую среду (по градиенту концентрации). Покидая клетку, ионы К+ уносят положительный заряд, что создает потенциал покоя равный примерно -60 мВ. Из коэффициентов проницаемости различных ионов видно, что каналы, проницаемые для Na+ и Cl-, преимущественно закрыты. Ионы фосфата и органические анионы, например белки, практически не могут проходить через мембраны. С помощью уравнения Нернста можно показать, что мембранный потенциал нервной клетки в первую очередь определяется ионами К+, которые вносят основной вклад в проводимость мембраны.

возбудимость раздражимость лабильность

Потенциал действия. Возбуждение нервной клетки под действием химического сигнала приводит к возникновению потенциала действия. Это означает, что потенциал покоя -60 мВ скачком изменяется на +30 мВ и спустя 1 мс принимает исходное значение. Процесс начинается с открывания Nа+ канала (1). Ионы Na+ устремляются в клетку (по градиенту концентрации), что вызывает локальное обращение знака мембранного потенциала (2). При этом Na+ каналы тотчас закрываются, т. е. поток ионов Na+ в клетку длится очень короткое время (3). В связи с изменением мембранного потенциала открываются потенциал - управляемые К+ каналы (2) и ионы К+ устремляются в обратном направлении, из клетки. В результате мембранный потенциал принимает первоначальное значение (3), и даже превышает на короткое время потенциал покоя (4). После этого нервная клетка вновь становится возбудимой.

За один импульс через мембрану проходит небольшая часть ионов Na+ и К+, и концентрационные градиенты обоих ионов сохраняются. Поэтому по мере получения клеткой новых импульсов процесс локального обращения знака мембранного потенциала может повторяться многократно. Распространение потенциала действия по поверхности нервной клетки основано на том, что локальное обращение мембранного потенциала стимулирует открывание соседних потенциал - управляемых ионных каналов, в результате чего возбуждение распространяется в виде деполяризационной волны на всю клетку.

. Воздействуя раздражителями разной силы в различные фазы потенциала действия, можно проследить, как изменяется возбудимость в ходе возбуждения. На рисунке видно, что период локального ответа характеризуется повышенной возбудимостью; во время фазы деполяризации мембрана утрачивает возбудимость, которая постепенно восстанавливается в ходе реполяризации.

Выделяют период абсолютной рефрактерности, который в нервных клетках продолжается около 1 мс. и, характеризуется их полной невозбудимостью. Период абсолютной рефрактерности возникает в результате практически полной инактивации натриевых каналов и повышения калиевой проводимости мембраны. По мере реполяризации мембраны происходит реактивация натриевых каналов и снижается калиевая проводимость. Это период относительной рефрактерности: потенциал действия может возникнуть только при действии более сильных раздражителей.

Страницы: 1 2 3

Смотрите также

Редкие и исчезающие растения Кавказа
ВВЕДЕНИЕ Природа Ставрополья богата и разнообразна. Ученые называют ее музеем под открытым небом. Здесь можно проследить спектр естественных экосистем - от полупустынь на востоке, чер ...

Невидимые миры
...

Витамин Н
...